МИНОБРНАУКИ РОССИИ
федеральное государственное бюджетное образовательное учреждение высшего образования
«Алтайский государственный университет»

Моделирование вычислительных систем

рабочая программа дисциплины
Закреплена за кафедройКафедра вычислительной техники и электроники
Направление подготовки09.06.01. Информатика и вычислительная техника
НаправленностьСистемный анализ, управление и обработка информации
Форма обученияЗаочная
Общая трудоемкость3 ЗЕТ
Учебный планz09_06_01_ИВиТ_Систем_анализ-1-2020
Часов по учебному плану 108
в том числе:
аудиторные занятия 8
самостоятельная работа 91
контроль 9
Виды контроля по курсам
экзамены: 2

Распределение часов по курсам

Курс 2 Итого
Вид занятий УПРПДУПРПД
Лекции 4 4 4 4
Практические 4 4 4 4
Сам. работа 91 91 91 91
Часы на контроль 9 9 9 9
Итого 108 108 108 108

Программу составил(и):
к.ф.-м.н., доцент кафедры вычислительной техники и электроники, Иордан В.И.

Рецензент(ы):
к.ф.-м.н., доцент кафедры прикладной физики, электроники и информационной безопасности, Рудер Д.Д.

Рабочая программа дисциплины
Моделирование вычислительных систем

разработана в соответствии с ФГОС:
Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 09.06.01 ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА (уровень подготовки кадров высшей квалификации). (приказ Минобрнауки России от 30.07.2014г. №875)

составлена на основании учебного плана:
09.06.01 Информатика и вычислительная техника
утвержденного учёным советом вуза от 30.06.2020 протокол № 6.

Рабочая программа одобрена на заседании кафедры
Кафедра вычислительной техники и электроники

Протокол от 08.06.2020 г. № 79/19-20
Срок действия программы: 2020-2021 уч. г.

Заведующий кафедрой
к.ф.-м.н., Пашнев Владимир Валентинович, доц., зав. кафедрой "Вычислительной техники и электроники"


Визирование РПД для исполнения в очередном учебном году

Рабочая программа пересмотрена, обсуждена и одобрена для
исполнения в 2020-2021 учебном году на заседании кафедры

Кафедра вычислительной техники и электроники

Протокол от 08.06.2020 г. № 79/19-20
Заведующий кафедрой к.ф.-м.н., Пашнев Владимир Валентинович, доц., зав. кафедрой "Вычислительной техники и электроники"


1. Цели освоения дисциплины

1.1.Цель изучения дисциплины – формирование у будущих специалистов теоретических знаний и практических навыков по применению основ моделирования с использованием современных персональных компьютеров и программных средств для решения широкого спектра задач в различных областях, а именно: ознакомить студентов с принципами и методами построения моделей и моделирования, проведения численных экспериментов и интерпретации результатов, проверки построенных моделей на адекватность реальным объектам.
Основными задачами изучения дисциплины «Моделирование вычислительных систем» являются:
- овладение фундаментальными знаниями по основам моделирования различных систем, в том числе и вычислительных и информационных систем: получить целостное представление о науке и ее роли в развитии вычислительных технологий в области модели-рования процессов и систем; владеть общими вопросами и принципами моделирования;
- использование вычислительных систем для построения и уточнения математической модели реального объекта в процессе моделирования;
- приобретение практических навыков решения задач моделирования с использованием персональных компьютеров и математических пакетов программ, навыков проведения численных экспериментов и интерпретации результатов моделирования.
Дисциплине «Моделирование вычислительных систем» предшествует изучение дисциплин «Математика» и «Алгебра и геометрия», «Вычислительная математика». Данный курс требует от студентов наличия базовых знаний по математическому анализу, численным методам, математической логике и теории алгоритмов, а также об архитектуре вычислительных систем. Знания и навыки, полученные при изучении дисциплины «Моделирование», используются при изучении общепрофессиональных и специальных дисциплин.

2. Место дисциплины в структуре ООП

Цикл (раздел) ООП: Б1.В.03

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

ПК-3 cпособность демонстрировать системное понимание в профессиональной области и получать научные результаты, удовлетворяющие установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук по направленности Приборы и методы экспериментальной физики
В результате освоения дисциплины обучающийся должен
3.1.Знать:
3.1.1.- об основных тенденциях развития программных средств и методов моделирования;
- о принципах построения и работы структурных, функциональных и логических схем ЭВМ;
- о методах и способах проверки построенных моделей на адекватность реальным объектам.
3.2.Уметь:
3.2.1.- классификацию, назначение, свойства и возможности основных типов моделей, применяемых на системном и функционально-логическом уровнях детализации проекта;
- применять основы анализа результатов моделирования;
- формулировать понятия, характеризующие модели и процесс моделирования;
- применять методики построения моделей;
- реализовывать этапы и подходы моделирования вычислительных и информационных систем.
3.3.Иметь навыки и (или) опыт деятельности (владеть):
3.3.1.- навыками проведения формализации исследуемых структур на системном и функционально-логическом уровне детализации проекта компьютерных систем;
- навыками планирования и проведения машинных экспериментов на разработанной им модели;
- навыками интерпретации полученных результатов, увязывая их с соответствующими техническими характеристиками;
- навыками использования ЭВМ, знания операционных систем и языков программирования для решения задач моделирования.

4. Структура и содержание дисциплины

Код занятия Наименование разделов и тем Вид занятия Курс Часов Компетенции Литература
Раздел 1. Средства моделирования и классификация моделей
1.1. Основные понятия теории моделирования и классификация видов моделирования. Средства моделирования и модели, применяемые в процессе проектирования вычислительных систем на разных стадиях детализации проекта. Классификация моделей. Имитационные модели и планирование имитационных экспериментов. Концептуальные модели. Логическая структура моделей и построение моделирующих алгоритмов. Формализация и алгоритмизация процессов обработки информации. Оценка точности и достоверности результатов моделирования. Инструментальные средства и языки моделирования. Анализ и интерпретация результатов моделирования на ЭВМ. Лекции 2 0,5 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
1.2. Практические 2 1
1.3. Архитектуры однопроцессорных и многопроцессорных вычислительных систем. Особенности моделирования систем информатики, вычислительных систем и сетей. Сам. работа 2 20 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
Раздел 2. Качественная теория динамических систем. Динамика биологических популяций.
2.1. Маятник: движение маятника вблизи положения устойчивого и неустойчивого равновесия, точное решение задачи о маятнике, приведение уравнений к безразмерному виду. Маятник с затуханием. Качественное исследование динамических (автономных, линейных) систем. Сводка результатов. Анализ нелинейных динамических систем. Модель Мальтуса и логистическое уравнение (уравнение Ферхюльста). Модель Вольтерры и его модификации. Межвидовая конкуренция. Лекции 2 1 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
2.2. Практические 2 1
2.3. Модель Вольтерры и его модификации. Межвидовая конкуренция. Сам. работа 2 19 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
Раздел 3. Колебательные процессы в химии. Предельные циклы и автоколебания. Самоорганизация и образование структур. Фракталы.Хаотическое поведение динамическое систем.
3.1. Затухающие колебания и незатухающие колебания. Предельные циклы: вводные примеры, классификация предельных циклов. Автоколебания в физических, химических и биологических системах: качественное рассмотрение автоколебательных систем, количественное рассмотрение автоколебаний. Распределенные системы. Брюсселятор. Фракталы в математике. Размерности: размерность самоподобия. Дискретный аналог уравнения Ферхюльста. Универсальность Фейгенбаума. Другие отображения. Система уравнений Лоренца. Лекции 2 1 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
3.2. Практические 2 1
3.3. Размерность по Хаусдорфу-Безиковичу. Фракталы в природе. Хаотическое поведение динамическое систем: аттрактор Ресслера. Неавтономная система. Сам. работа 2 20 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
Раздел 4. Стохастические и детерминистические модели:
4.1. Теория перколяции: критические показатели и масштабная инвариантность, Алгоритм Хошена-Копельмана. Моделирование роста дендритов. Клеточные автоматы: ограниченная диффузией агрегация. Электрический пробой диэлектрика. Игра «Жизнь». Модель Винера-Розенблюта. Модель Ва-Тор. Модель Изинга и генетические алгоритмы: Алгоритм Метрополиса. Задача о коммивояжере. Распознавание образов. Генетические алгоритмы. Лекции 2 1 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
4.2. Практические 2 1
4.3. Распознавание образов. Генетические алгоритмы. Сам. работа 2 16 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
Раздел 5. Статистическое моделирование - Генерация случайных чисел на компьютере. Инструментальные средства для исследования динамических систем
5.1. Линейный конгруэнтный генератор. Мультипликативный конгруэнтный алгоритм Генератор на основе сдвига регистра. Исследование динамической системы с использованием пакетов Mathematica, Maple, Маtlab, Mathcad. Лекции 2 0,5 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
5.2. Изучение пакетов Mathematica, Maple, Маtlab, Mathcad Сам. работа 2 16 ПК-3 Л2.2, Л2.3, Л1.1, Л2.1, Л2.4, Л2.5, Л1.2
Раздел 6. Аттестация
6.1. Экзамен 2 9 ПК-3 Л1.1, Л1.2

5. Фонд оценочных средств

5.1. Контрольные вопросы и задания для проведения текущего контроля и промежуточной аттестации по итогам освоения дисциплины
1. Основные понятия теории моделирования и классификация видов моделирования
2. Средства моделирования и модели, применяемые в процессе проектирования вычислительных систем на разных стадиях детализации проекта
3. Классификация моделей. Имитационные модели и планирование имитационных экспериментов
4. Концептуальные модели. Логическая структура моделей и построение моделирующих алгоритмов
5. Формализация и алгоритмизация процессов обработки информации
6. Оценка точности и достоверности результатов моделирования
7. Инструментальные средства и языки моделирования
8. Анализ и интерпретация результатов моделирования на ЭВМ
9. Особенности моделирования систем информатики, вычислительных систем и сетей
10. Качественная теория динамических систем (дифференциальная модель): движение маятника вблизи положения устойчивого и неустойчивого равновесия, точное решение задачи о маятнике, приведение уравнений к безразмерному виду.
11. Качественная теория динамических систем: дифференциальная модель маятника с затуханием.
12. Качественное исследование динамических систем.
13. Сводка результатов качественного исследования динамических систем.
14. Динамика биологических популяций: модель Мальтуса и логистическое уравнение (уравнение Ферхюльста).
15. Динамика биологических популяций: модель Вольтерры и его модификации. Межвидовая конкуренция.
16. Колебательные процессы в химии: затухающие колебания и незатухающие колебания.
17. Предельные циклы: вводные примеры, классификация предельных циклов.
18. Автоколебания в физических, химических и биологических системах: качественное рассмотрение автоколебательных систем и автоколебаний.
19. Самоорганизация и образование структур: распределенные системы.
20. Самоорганизация и образование структур: Брюсселятор.
21. Фракталы в математике.
22. Размерности фракталов: размерность самоподобия, размерность по Хаусдорфу-Безиковичу.
23. Фракталы в природе.
24. Хаотическое поведение динамическое систем: дискретный аналог уравнения Ферхюльста.
25. Хаотическое поведение динамическое систем: универсальность Фейгенбаума.
26. Хаотическое поведение динамическое систем: различные отображения.
27. Хаотическое поведение динамическое систем: система уравнений Лоренца.
28. Хаотическое поведение динамическое систем: аттрактор Ресслера.
29. Хаотическое поведение динамическое систем: неавтономная система.
30. Теория перколяции: критические показатели и масштабная инвариантность.
31. Теория перколяции: алгоритм Хошена-Копельмана.
32. Моделирование роста дендритов: ограниченная диффузией агрегация.
33. Моделирование роста дендритов: электрический пробой диэлектрика.
34. Клеточные автоматы: игра «Жизнь».
35. Клеточные автоматы: модель Винера-Розенблюта.
36. Клеточные автоматы: модель Ва-Тор.
37. Модель Изинга: алгоритм Метрополиса.
38. Задача о коммивояжере.
39. Распознавание образов.
40. Генетические алгоритмы
41. Исследование динамической системы с использованием пакета Mathematica
42. Исследование динамической системы с использованием пакета Maple
43. Исследование динамической системы с использованием пакета Matlab
44. Исследование динамической системы с использованием пакета Mathcad
45. Генерация случайных чисел на компьютере: линейный конгруэнтный генератор.
46. Генерация случайных чисел на компьютере: мультипликативный конгруэнтный алгоритм.
47. Генерация случайных чисел на компьютере: генератор на основе сдвига регистра.
5.2. Темы письменных работ для проведения текущего контроля (эссе, рефераты, курсовые работы и др.)
1. Исследование компьютерных систем с помощью имитационного моделирования.
2. Разработка и исследование моделей функциональных схем ЭВМ в многозначных алфавитах.
3. Исследование дифференциальной модели колебательной системы.
4. Математическое моделирование динамики биологических популяций.
5. Моделирование колебательных процессов в химии.
6. Моделирование автоколебательных систем в физике, химии и биологии - предельные циклы.
7. Моделирование самоорганизации распределенных систем – моделирование диссипативных структур.
8. Моделирование фрактальных структур.
9. Хаотическое поведение динамических систем.
10. Моделирование роста дендритов.
11. Изучение поведения клеточного автомата – игра «Жизнь».
12. Моделирование как метод динамических исследований.
13. Точность и достоверность аналогового моделирования.
14. Принципы структурного моделирования.
15. Схемы моделирования линейных звеньев систем автоматического управления из стандартных блоков ЭВМ.
16. Моделирование электрических цепей и физических элементов методом прямых аналогий.
17. Схемы моделирования некоторых функциональных зависимостей и выполнения нелинейных математических операций.
18. Исследование компьютерных систем с помощью имитационного моделирования.
19. Разработка и исследование моделей функциональных схем ЭВМ в многозначных алфавитах.
20. Исследование дифференциальной модели колебательной системы.
5.3. Фонд оценочных средств для проведения промежуточной аттестации

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Рекомендуемая литература
6.1.1. Основная литература
Авторы Заглавие Издательство, год Эл. адрес
Л1.1 Павловский Ю.Н., Белотелов Н.В., Бродский Ю.И. Имитационное моделирование: учеб. пособие для вузов М.: Академия, 2008 www.lib.asu.ru
Л1.2 Дьяконов В.П. VisSim+Mathcad+MATLAB. Визуальное математическое моделирование: СОЛОН - ПРЕСС // ЭБС "Университетская библиотека ONLINE", 2008 http://biblioclub.ru/index.php?page=book&id=117681
6.1.2. Дополнительная литература
Авторы Заглавие Издательство, год Эл. адрес
Л2.1 Башкирцева И.А., Ряшко Л.Б. Компьютерное моделирование популяционной динамики: учеб. пособие Екатеринбург: Изд-во УрГУ, 2009
Л2.2 В. С. Зарубин Математическое моделирование в технике: учеб. для вузов М.: Изд-во МГТУ, 2001
Л2.3 С. В. Попов Логическое моделирование: [учебник] М.: Тровант, 2006
Л2.4 Бусленко Н.П. Моделирование сложных систем: М. : Наука, 1978
Л2.5 Подколзин А.С. Компьютерное моделирование логических процессов. Архитектура и язык решателя задач: ФИЗМАТЛИТ, 2008
6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"
Название Эл. адрес
Э1 e.lanbook.com/books/
Э2 www.gpntb.ru/ Государственная публичная научно-техническая библиотека.
Э3 www.nlr.ru/ Российская национальная библиотека.
Э4 www.nns.ru/ Национальная электронная библиотека.
Э5 www.rsl.ru/ Российская государственная библиотека.
Э6 www.microinform.ru/ Учебный центр компьютерных технологий «Микроинформ».
Э7 www.tests.specialist.ru/ Центр компьютерного обучения МГТУ им. Н.Э.Баумана.
Э8 www.intuit.ru/ Образовательный сайт
Э9 www.window.edu.ru/ Библиотека учебной и методической литературы
Э10 www.osp.ru/ Журнал «Открытые системы»
Э11 www.ihtika.lib.ru/ Библиотека учебной и методической литературы
6.3. Перечень программного обеспечения
Для проведения лабораторных занятий необходимо использование компьютерного класса. На компьютерах должны быть установлены программные средства, поддерживающие работу с алгоритмическими языками С/C++, Pascal и т.п.
Microsoft Windows
Microsoft Office
7-Zip
AcrobatReader
6.4. Перечень информационных справочных систем
Электронная библиотечная система Алтайского государственного университета (http://elibrary.asu.ru/)
Электронно-библиотечная система Университетская библиотека on-line (http://www.biblioclub.ru)
Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com)
Электронно-библиотечная система Юрайт (https://www.biblio-online.ru/)

7. Материально-техническое обеспечение дисциплины

Аудитория Назначение Оборудование
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа (лабораторных и(или) практических), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, курсового проектирования (выполнения курсовых работ), проведения практик Стандартное оборудование (учебная мебель для обучающихся, рабочее место преподавателя, доска)
203К лаборатория цифровой обработки сигналов - учебная аудитория для проведения занятий семинарского типа (лабораторных и(или) практических); проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Учебная мебель на 12 посадочных мест; рабочее место преподавателя; доска меловая 2 шт.; компьютеры: марка компьютер Парус модель 945 MSI - 12 единиц; коммутатор D-LINK; методические указания по выполнению лабораторной работы по дисциплине "Нейроинформационные технологии": алгоритм обратного рассеяния; обучение без учителя; персептрон; Сети Хопфилда и Хемминга.
001вК склад экспериментальной мастерской - помещение для хранения и профилактического обслуживания учебного оборудования Акустический прибор 01021; виброизмеритель 00032; вольтметр Q1202 Э-500; вольтметр универсальный В7-34А; камера ВФУ -1; компьютер Турбо 86М; масспектрометр МРС -1; осциллограф ЕО -213- 2 ед.; осциллограф С1-91; осциллограф С7-19; программатор С-815; самописец 02060 – 2 ед.; стабилизатор 3218; терц-октавный фильтр 01023; шкаф вытяжной; шумомер 00026; анализатор АС-817; блок 23 Г-51; блок питания "Статрон" – 2 ед.; блок питания Ф 5075; вакуумный агрегат; весы; вольтметр VM -70; вольтметр В7-15; вольтметр В7-16; вольтметр ВУ-15; генератор Г-5-6А; генератор Г4-76А; генератор Г4-79; генератор Г5-48; датчик колебаний КВ -11/01; датчик колебаний КР -45/01; делитель Ф5093; измеритель ИМП -2; измеритель параметров Л2-12; интерферометр ИТ 51-30; источник "Агат" – 3 ед.; источник питания; источник питания 3222; источник питания ЭСВ -4; лабораторная установка для настройки газовых лазеров; лазер ЛГИ -21; М-кальк-р МК-44; М-калькул-р "Электроника"; магазин сопротивления Р4075; магазин сопротивления Р4077; микроскоп МБС -9; модулятор МДЕ; монохроматор СДМС -97; мост переменного тока Р5066; набор цветных стекол; насос вакумный; насос вакуумный ВН-01; осциллограф С1-31; осциллограф С1-67; осциллограф С1-70; осциллограф С1-81; осциллоскоп ЕО -174В – 2 ед.; пентакта L-100; пирометр "Промень"; пистонфон 05001; преобразователь В9-1; прибор УЗДН -2Т; скамья оптическая СО 1м; спектограф ДФС -452; спектограф ИСП -51; стабилизатор 1202; стабилизатор 3217 – 4 ед.; стабилизатор 3218; стабилизатор 3222 – 3 ед.; станок токарный ТВ-4; усилитель мощности ЛВ -103 – 4 ед.; усилитель У5-9; центрифуга ВЛ-15; частотомер Ч3-54А; шкаф металлический; эл.двигатель; электродинамический калибратор 11032

8. Методические указания для обучающихся по освоению дисциплины

не требуется