МИНОБРНАУКИ РОССИИ
федеральное государственное бюджетное образовательное учреждение высшего образования
«Алтайский государственный университет»

Математика
рабочая программа дисциплины

Закреплена за кафедройКафедра алгебры и математической логики
Направление подготовки19.03.01. Биотехнология
Форма обученияОчная
Общая трудоемкость9 ЗЕТ
Учебный план19_03_01_Биотех-1-2020
Часов по учебному плану 324
в том числе:
аудиторные занятия 126
самостоятельная работа 144
контроль 54
Виды контроля по семестрам
экзамены: 2, 3

Распределение часов по семестрам

Курс (семестр) 1 (1) 1 (2) 2 (3) Итого
Недель 18 21 18,5
Вид занятий УПРПДУПРПДУПРПДУПРПД
Лекции 22 36 22 36 22 36 66 108
Практические 20 36 20 36 20 36 60 108
Сам. работа 66 72 39 81 39 45 144 198
Часы на контроль 0 0 27 27 27 27 54 54
Итого 108 144 108 180 108 144 324 468

Программу составил(и):
к.ф-м.н, доцент, Вараксин С.В.

Рецензент(ы):
к.ф-м.н, доцент, Пономарев И.В.

Рабочая программа дисциплины
Математика

разработана в соответствии с ФГОС:
Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 19.03.01 Биотехнология (уровень бакалавриата) (приказ Минобрнауки России от 11.03.2015г. №193)

составлена на основании учебного плана:
19.03.01 Биотехнология
утвержденного учёным советом вуза от 30.06.2020 протокол № 6.

Рабочая программа одобрена на заседании кафедры
Кафедра алгебры и математической логики

Протокол от 30.08.2019 г. № 15
Срок действия программы: 2019-2020 уч. г.

Заведующий кафедрой
профессор, д.ф.-м.н. Будкин А.И.

Визирование РПД для исполнения в очередном учебном году

Рабочая программа пересмотрена, обсуждена и одобрена для
исполнения в 2020-2021 учебном году на заседании кафедры

Кафедра алгебры и математической логики

Протокол от 30.08.2019 г. № 15
Заведующий кафедрой профессор, д.ф.-м.н. Будкин А.И.

1. Цели освоения дисциплины

1.1.Целями освоения учебной дисциплины математика являются:
- дать студентам математические знания в объеме, достаточном для изучения естественнонаучных и обще профессиональных дисциплин
- привитие умения использовать абстрактные математические модели для решения задач профес-сиональной направленности.
- развитие логического и алгоритмического мышления, математической интуиции, развитие способности к дальнейшему самостоятельному образованию.

2. Место дисциплины в структуре ООП

Цикл (раздел) ООП: Б1.Б

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

ОПК-2: способностью и готовностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования
В результате освоения дисциплины обучающийся должен
3.1.Знать:
3.1.1.Знает:
основные понятия, утверждения и формулы линейной алгебры, векторной алгебры, аналитической геометрии, математического анализа, позволяющие решать простейшие математические задачи, возникающие при дальнейшем обучении и связанные с профессиональной подготовкой студентов;
3.2.Уметь:
3.2.1.Умеет:
решать элементарные математические задачи, возникающие при дальнейшем обучении и связанные с профессиональной подготовкой студентов;

3.3.Иметь навыки и (или) опыт деятельности (владеть):
3.3.1.Владеет:
терминологией основных разделов высшей математики, предусмотренных программой.

4. Структура и содержание дисциплины

Код занятия Наименование разделов и тем Вид занятия Семестр Часов Компетенции Литература
Раздел 1. Линейная алгебра
1.1. Матрицы и их виды. Действия над матрицами Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.2. Матрицы и их виды. Действия над матрицами Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.3. Матрицы и их виды. Действия над матрицами Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.4. Определители 2-го и 3-го порядков, их свойства. Алгебраические дополнения и разложение определителя по строке или столбцу. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.5. Определители 2-го и 3-го порядков, их свойства. Алгебраические дополнения и разложение определителя по строке или столбцу. Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.6. Определители 2-го и 3-го порядков, их свойства. Алгебраические дополнения и разложение определителя по строке или столбцу. Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.7. Понятие обратной матрицы, ее вычисление Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.8. Понятие обратной матрицы, ее вычисление Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.9. Понятие обратной матрицы, ее вычисление Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.10. Системы линейных уравнений. Методы их решения: правило Крамера и метод Гаусса. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.11. Системы линейных уравнений. Методы их решения: правило Крамера и метод Гаусса. Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.12. Системы линейных уравнений. Методы их решения: правило Крамера и метод Гаусса. Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.13. Матричная запись системы линейных уравнений. Системы n линейных уравнений Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.14. Матричная запись системы линейных уравнений. Системы n линейных уравнений Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
1.15. Матричная запись системы линейных уравнений. Системы n линейных уравнений Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 2. Аналитическая геометрия
2.1. Метод координат на плоскости. Уравнения линий. Различные формы уравнения прямой. Угол между прямыми. Расстояние от точки до прямой. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.2. Метод координат на плоскости. Уравнения линий. Различные формы уравнения прямой. Угол между прямыми. Расстояние от точки до прямой. Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.3. Метод координат на плоскости. Уравнения линий. Различные формы уравнения прямой. Угол между прямыми. Расстояние от точки до прямой. Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.4. Кривые второго порядка: окружность, эллипс, гипербола, парабола.Общее уравнение кривые второго порядка Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.5. Кривые второго порядка: окружность, эллипс, гипербола, парабола.Общее уравнение кривые второго порядка Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.6. Векторы, линейные операции над векторами. Направляющие косинусы и длина вектора. Скалярное произведение векторов, его механический смысл. Угол между двумя векторами и условие ортогональности двух векторов. Векторное произведение, его свойства. Условие коллинеарности векторов. Геометрический смысл определителя второго порядка. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.7. Векторы, линейные операции над векторами. Направляющие косинусы и длина вектора. Скалярное произведение векторов, его механический смысл. Угол между двумя векторами и условие ортогональности двух векторов. Векторное произведение, его свойства. Условие коллинеарности векторов. Геометрический смысл определителя второго порядка. Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.8. Векторы, линейные операции над векторами. Направляющие косинусы и длина вектора. Скалярное произведение векторов, его механический смысл. Угол между двумя векторами и условие ортогональности двух векторов. Векторное произведение, его свойства. Условие коллинеарности векторов. Геометрический смысл определителя второго порядка. Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.9. Уравнения плоскости и прямой в пространстве, основные задачи. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.10. Уравнения плоскости и прямой в пространстве, основные задачи. Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.11. Уравнения плоскости и прямой в пространстве, основные задачи. Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.12. Поверхности второго порядка. Цилиндрические поверхности. Сфера. Конусы. Эллипсоид. Гиперболоиды. Параболоиды. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.13. Поверхности второго порядка. Цилиндрические поверхности. Сфера. Конусы. Эллипсоид. Гиперболоиды. Параболоиды. Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.14. Поверхности второго порядка. Цилиндрические поверхности. Сфера. Конусы. Эллипсоид. Гиперболоиды. Параболоиды. Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.15. Полярные координаты на плоскости. Сферические координаты в пространстве. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.16. Полярные координаты на плоскости. Сферические координаты в пространстве. Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.17. Полярные координаты на плоскости. Сферические координаты в пространстве. Сам. работа 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.18. Кривые второго порядка: окружность, эллипс, гипербола, парабола.Общее уравнение кривые второго порядка Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
2.19. Кривые в полярных координатах Сам. работа 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 3. Элементы высшей алгебры
3.1. Комплексные числа. Алгебраическая форма комплексных чисел Модуль и аргумент комплексного числа. Векторная и тригонометрическая формы комплексных чисел. Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
3.2. Комплексные числа. Алгебраическая форма комплексных чисел Модуль и аргумент комплексного числа. Векторная и тригонометрическая формы комплексных чисел Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
3.3. Комплексные числа. Алгебраическая форма комплексных чисел Модуль и аргумент комплексного числа. Векторная и тригонометрическая формы комплексных чисел Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
3.4. Многочлены. Теорема Безу. Основная теорема алгебры. Разложение многочлена на множители. Разложение рациональной дроби в сумму простейших дробей Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
3.5. Многочлены. Теорема Безу. Основная теорема алгебры. Разложение многочлена на множители. Разложение рациональной дроби в сумму простейших дробей Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
3.6. Многочлены. Теорема Безу. Основная теорема алгебры. Разложение многочлена на множители. Разложение рациональной дроби в сумму простейших дробей Сам. работа 1 5 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 4. Введение в анализ
4.1. Элементы математической логики: символы математической логики, их использование Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.2. Элементы математической логики: символы математической логики, их использование Сам. работа 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.3. Функция. Область ее определения. Способы задания. Операции над функциями. Основные элементарные функции, их свойства и графики Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.4. Функция. Область ее определения. Способы задания. Операции над функциями. Основные элементарные функции, их свойства и графики Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.5. Функция. Область ее определения. Способы задания. Операции над функциями. Основные элементарные функции, их свойства и графики Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.6. Понятие предела. Предел числовой последовательности. Предел монотонной ограниченной последовательности. Число е. Бесконечно малые в точке функции, их свойства. Сравнение бесконечно малых величин. Предел функции в точке, его свойства. Предел функции в бесконечности. Пределы монотонных функций Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.7. Понятие предела. Предел числовой последовательности. Предел монотонной ограниченной последовательности. Число е. Бесконечно малые в точке функции, их свойства. Сравнение бесконечно малых величин. Предел функции в точке, его свойства. Предел функции в бесконечности. Пределы монотонных функций Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.8. Понятие предела. Предел числовой последовательности. Предел монотонной ограниченной последовательности. Число е. Бесконечно малые в точке функции, их свойства. Сравнение бесконечно малых величин. Предел функции в точке, его свойства. Предел функции в бесконечности. Пределы монотонных функций Сам. работа 1 5 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.9. Непрерывность функций в точке. Точки разрыва. Свойства функций, непрерывных на отрезке Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.10. Непрерывность функций в точке. Точки разрыва. Свойства функций, непрерывных на отрезке Практические 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.11. Непрерывность функций в точке. Точки разрыва. Свойства функций, непрерывных на отрезке Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.12. Асимптоты Лекции 1 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.13. Асимптоты Практические 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.14. Асимптоты Сам. работа 1 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
4.15. Промежуточная аттестация Экзамен 1 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 5. Дифференциальное исчисление
5.1. Производная функции. Ее смысл и свойства. Уравнение касательной. Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.2. Производная функции. Ее смысл и свойства. Уравнение касательной. Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.3. Производная функции. Ее смысл и свойства. Уравнение касательной. Сам. работа 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.4. Дифференциал функции, его смысл и применение Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.5. Дифференциал функции, его смысл и применение Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.6. Дифференциал функции, его смысл и применение Сам. работа 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.7. Основные теоремы: Ролля, Лагранжа, Коши. Правила Лопиталя Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.8. Основные теоремы: Ролля, Лагранжа, Коши. Правила Лопиталя Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.9. Основные теоремы: Ролля, Лагранжа, Коши. Правила Лопиталя Сам. работа 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.10. Исследование функции. На монотонность и экстремумы. Наибольшее и наименьшее значения функции на отрезке. Исследование функций на вогнутость и точки перегиба Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.11. Исследование функции. На монотонность и экстремумы. Наибольшее и наименьшее значения функции на отрезке. Исследование функций на вогнутость и точки перегиба Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.12. Исследование функции. На монотонность и экстремумы. Наибольшее и наименьшее значения функции на отрезке. Исследование функций на вогнутость и точки перегиба Сам. работа 2 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.13. Основные правила дифференцирования. Производная сложной функции Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.14. Основные правила дифференцирования. Производная сложной функции Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
5.15. Основные правила дифференцирования. Производная сложной функции Сам. работа 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 6. Неопределенный интеграл
6.1. Первообразная. Неопределенный интеграл и его свойства. Метод интегрирования разложением Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.2. Первообразная. Неопределенный интеграл и его свойства. Метод интегрирования разложением Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.3. Первообразная. Неопределенный интеграл и его свойства. Метод интегрирования разложением Сам. работа 2 8 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.4. Интегрирование методом подстановки Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.5. Интегрирование методом подстановки Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.6. Интегрирование методом подстановки Сам. работа 2 8 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.7. Интегрирование по частям. Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.8. Интегрирование по частям. Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.9. Интегрирование по частям. Сам. работа 2 8 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.10. Интегрирование рациональных функций Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.11. Интегрирование рациональных функций Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.12. Интегрирование рациональных функций Сам. работа 2 8 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.13. Интегрирование тригонометрических функций Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.14. Интегрирование тригонометрических функций Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
6.15. Интегрирование тригонометрических функций Сам. работа 2 8 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 7. Определенный интеграл и его приложения
7.1. Определенный интеграл. Его свойства. Формула Ньютона – Лейбница. Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.2. Определенный интеграл. Его свойства. Формула Ньютона – Лейбница Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.3. Определенный интеграл. Его свойства. Формула Ньютона – Лейбница Сам. работа 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.4. Интегрирование методом подстановки и интегрирование по частям. Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.5. Интегрирование методом подстановки и интегрирование по частям. Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.6. Интегрирование методом подстановки и интегрирование по частям. Сам. работа 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.7. Применение определенных интегралов при решении геометрических и физических задач. Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.8. Применение определенных интегралов при решении геометрических и физических задач. Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.9. Применение определенных интегралов при решении геометрических и физических задач. Сам. работа 2 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.10. Несобственные интегралы и признаки сходимости Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.11. Несобственные интегралы и признаки сходимости Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
7.12. Несобственные интегралы и признаки сходимости Сам. работа 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 8. Дифференциальное исчисление Функций нескольких переменных
8.1. Функции нескольких переменных. Предел и непрерывность функции Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.2. Функции нескольких переменных. Предел и непрерывность функции Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.3. Функции нескольких переменных. Предел и непрерывность функции Сам. работа 2 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.4. Частные производные. Дифференциал, его связь с частными производными. Геометрический смысл частных производных и дифференциала Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.5. Частные производные. Дифференциал, его связь с частными производными. Геометрический смысл частных производных и дифференциала Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.6. Частные производные. Дифференциал, его связь с частными производными. Геометрический смысл частных производных и дифференциала Сам. работа 2 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.7. Производная по направлению. Частные производные высших порядков Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.8. Производная по направлению. Частные производные высших порядков Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.9. Производная по направлению. Частные производные высших порядков Сам. работа 2 6 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.10. Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Лекции 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.11. Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Практические 2 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.12. Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Сам. работа 2 6 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
8.13. Промежуточная аттестация Экзамен 2 27 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 9. Двойные интегралы
9.1. Определение двойного интеграла. Нормальные области. Переход от двойного интеграла к повторному Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
9.2. Определение двойного интеграла. Нормальные области. Переход от двойного интеграла к повторному Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
9.3. Определение двойного интеграла. Нормальные области. Переход от двойного интеграла к повторному Сам. работа 3 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
9.4. Замена переменных в двойном интеграле Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
9.5. Замена переменных в двойном интеграле Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
9.6. Замена переменных в двойном интеграле Сам. работа 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 10. Обыкновенные дифференциальные уравнения
10.1. Обыкновенные дифференциальные уравнения 1-го порядка. Основные понятия. Задача Коши. Теорема существования и единственности решения задачи Коши. Уравнения 1-го порядка с разделяющимися переменными Линейные и однородные уравнения 1-го порядка Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.2. Обыкновенные дифференциальные уравнения 1-го порядка. Основные понятия. Задача Коши. Теорема существования и единственности решения задачи Коши. Уравнения 1-го порядка с разделяющимися переменными Линейные и однородные уравнения 1-го порядка Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.3. Обыкновенные дифференциальные уравнения 1-го порядка. Основные понятия. Задача Коши. Теорема существования и единственности решения задачи Коши. Уравнения 1-го порядка с разделяющимися переменными Линейные и однородные уравнения 1-го порядка Сам. работа 3 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.4. Дифференциальные уравнения высших порядков. Задача Коши. Линейные однородные и неоднородные уравнения. Структура общего решения. Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.5. Дифференциальные уравнения Бернули и в полных дифференциалах Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.6. Дифференциальные уравнения Бернули и в полных дифференциалах Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.7. Дифференциальные уравнения Бернули и в полных дифференциалах Сам. работа 3 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.8. Дифференциальные уравнения высших порядков. Задача Коши. Линейные однородные и неоднородные уравнения. Структура общего решения. Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.9. Дифференциальные уравнения высших порядков. Задача Коши. Линейные однородные и неоднородные уравнения. Структура общего решения. Сам. работа 3 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.10. Методы решения линейных однородных уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.11. Методы решения линейных однородных уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.12. Линейные однородные и неоднородные уравнения. Структура общего решения. Методы решения линейных однородных уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида Сам. работа 3 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.13. Методы решения систем линейных дифференциальных уравнений Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.14. Методы решения систем линейных дифференциальных уравнений Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
10.15. Методы решения систем линейных дифференциальных уравнений Сам. работа 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 11. Основы теории вероятностей
11.1. Основные понятия комбинаторики Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.2. Пространство элементарных событий. Алгебра событий. Понятие случайного события. Вероятность. Элементарная теория вероятностей. Методы вычисления вероятностей Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.3. Пространство элементарных событий. Алгебра событий. Понятие случайного события. Вероятность. Элементарная теория вероятностей. Методы вычисления вероятностей Сам. работа 3 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.4. Условная вероятность. Формула полной вероятности. Формула Байеса. Схема Бернулли. Теоремы Пуассона и Муавра-Лапласа Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.5. Условная вероятность. Формула полной вероятности. Формула Байеса. Схема Бернулли. Теоремы Пуассона и Муавра-Лапласа Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.6. Условная вероятность. Формула полной вероятности. Формула Байеса. Схема Бернулли. Теоремы Пуассона и Муавра-Лапласа Сам. работа 3 3 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.7. Дискретные случайные величины. Функция распределения и ее свойства. Математическое ожидание и дисперсия дискретной случайной величины. Лекции 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.8. Дискретные случайные величины. Функция распределения и ее свойства. Математическое ожидание и дисперсия дискретной случайной величины. Практические 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.9. Дискретные случайные величины. Функция распределения и ее свойства. Математическое ожидание и дисперсия дискретной случайной величины. Сам. работа 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.10. Непрерывные случайные величины. Функция распределения, плотность вероятности случайной величины, их взаимосвязь и свойства. Математическое ожидание и дисперсия непрерывной случайной величины. Нормальное распределение и его свойства. Лекции 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.11. Непрерывные случайные величины. Функция распределения, плотность вероятности случайной величины, их взаимосвязь и свойства. Математическое ожидание и дисперсия непрерывной случайной величины. Нормальное распределение и его свойства. Практические 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.12. Непрерывные случайные величины. Функция распределения, плотность вероятности случайной величины, их взаимосвязь и свойства. Математическое ожидание и дисперсия непрерывной случайной величины. Нормальное распределение и его свойства. Сам. работа 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.13. Закон больших чисел. Теоремы Бернулли и Чебышева. Лекции 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.14. Закон больших чисел. Теоремы Бернулли и Чебышева. Практические 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
11.15. Закон больших чисел. Теоремы Бернулли и Чебышева. Сам. работа 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
Раздел 12. Математическая статистика
12.1. Генеральная совокупность и выборка. Вариационный ряд. Гистограмма, эмпирическая функция распределения, выборочная средняя и дисперсия Лекции 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
12.2. Генеральная совокупность и выборка. Вариационный ряд. Гистограмма, эмпирическая функция распределения, выборочная средняя и дисперсия Практические 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
12.3. Генеральная совокупность и выборка. Вариационный ряд. Гистограмма, эмпирическая функция распределения, выборочная средняя и дисперсия Сам. работа 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
12.4. Проверка вероятностных гипотез Лекции 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
12.5. Проверка вероятностных гипотез Практические 3 2 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
12.6. Проверка вероятностных гипотез Сам. работа 3 4 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2
12.7. Промежуточная аттестация Экзамен 3 27 ОПК-2 Л1.1, Л1.2, Л2.1, Л2.2

5. Фонд оценочных средств

5.1. Контрольные вопросы и задания
приложение
5.2. Темы письменных работ (эссе, рефераты, курсовые работы и др.)
приложение
5.3. Фонд оценочных средств
приложение
Приложения
Приложение 1.   ВОПРОСЫ К ЭКЗАМЕНУ.docx
Приложение 2.   ФОС Биотехнология.doc

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Рекомендуемая литература
6.1.1. Основная литература
Авторы Заглавие Издательство, год Эл. адрес
Л1.1 А. В. Дорофеева Высшая математика : учебник для академического бакалавриата — М. : Издательство Юрайт, 2017 www.biblio-online.ru/book/A3EFDC48-87CB-41E5-A078-05BDBB3BD6E8
Л1.2 В. С. Шипачев Высшая математика : : учебник М. : Издательство Юрайт, 2020 https://urait.ru/book/vysshaya-matematika-449732
6.1.2. Дополнительная литература
Авторы Заглавие Издательство, год Эл. адрес
Л2.1 И. И. Баврин Высшая математика для химиков, биологов и медиков : учебник и практикум для прикладного бакалавриата М. : Издательство Юрайт, 2018 www.biblio-online.ru/book/F5706AD9-A73B-4D5B-8403-AF7BAE17294F.
Л2.2 Я. С. Бугров, С. М. Никольский Высшая математика в 3 т. Т. 1. Дифференциальное и интегральное исчисление в 2 кн. Книга 1 : учебник для академического бакалавриата М. : Издательство Юрайт, 2018 www.biblio-online.ru/book/412BE9F5-523F-4583-AC76-294E63DCD7EE.
6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"
Название Эл. адрес
Э1 Математика для химиков (2 семестр) https://portal.edu.asu.ru/course/view.php?id=5164
Э2 Математика на химическом факультете https://portal.edu.asu.ru/course/view.php?id=499
Э3 Свободная энциклопедия Википедия (http://ru.wikipedia.org)
Э4 Поисковые системы: Яндекс, Rambler, Google
Э5 Образовательный математический сайт http://www.exponenta.ru/
6.3. Перечень программного обеспечения
Microsoft Windows 7 № 60674416 от 19.07.2012 г. (бессрочная);
Microsoft Office 2010 № 60674416 от 19.07.2012 г. (бессрочная).
7-Zip
AcrobatReader
6.4. Перечень информационных справочных систем
1. http://www.lib.asu.ru - Научная библиотека Алтайского государственного университета;
2. http://www.biblioclub.ru - электронно-библиотечная система издательства «Лань»;
3. http://exponenta.ru - Образовательный математический сайт
4. http://www.biblioclub.ru - электронно-библиотечная система "Университетская библиотека online";
5. База данных литературы информационно-методического кабинета факультета социологии АлтГУ "ФОЛИАНТ"

7. Материально-техническое обеспечение дисциплины

Аудитория Назначение Оборудование
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа (лабораторных и(или) практических), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, курсового проектирования (выполнения курсовых работ), проведения практик Стандартное оборудование (учебная мебель для обучающихся, рабочее место преподавателя, доска)
Помещение для самостоятельной работы помещение для самостоятельной работы обучающихся Компьютеры, ноутбуки с подключением к информационно-телекоммуникационной сети «Интернет», доступом в электронную информационно-образовательную среду АлтГУ

8. Методические указания для обучающихся по освоению дисциплины

1. Для успешного освоения содержания дисциплины необходимо посещать лекции, принимать активное участие в работе на семинаре, практическом занятии, а также выполнять задания, предлагаемые преподавателем для самостоятельного изучения.
2. Лекция.
-На лекцию приходите не опаздывая, так как это неэтично.
- На лекционных занятиях необходимо конспектировать изучаемый материал.
- Для систематизации лекционного материала, который будет полезен при подготовке к итоговому контролю знаний, записывайте на каждой лекции тему, вопросы для изучения, рекомендуемую литературу.
- В каждом вопросе выделяйте главное, обязательно запишите ключевые моменты (определение, факты, законы, правила и т.д.), подчеркните их.
- Если по содержанию материала возникают вопросы, не нужно выкрикивать, запишите их и задайте по окончании лекции или на семинарском занятии.
- Перед следующей лекцией обязательно прочитайте предыдущую, чтобы актуализировать знания и осознанно приступить к освоению нового содержания.
3.Семинарское (практическое) занятие – это форма работы, где студенты максимально активно участвуют в обсуждении темы.
- Для подготовки к семинару необходимо взять план семинарского занятия (у преподавателя).
- Самостоятельную подготовку к семинарскому занятию необходимо начинать с изучения понятийного аппарата темы. Рекомендуем использовать справочную литературу (словари, справочники, энциклопедии), целесообразно создать и вести свой словарь терминов.
- На семинар выносится обсуждение не одного вопроса, поэтому важно просматривать и изучать все вопросы семинара, но один из вопросов исследовать наиболее глубоко, с использованием дополнительных источников (в том числе тех, которые вы нашли самостоятельно). Не нужно пересказывать лекцию.
- Важно запомнить, что любой источник должен нести достоверную информацию, особенно это относится к Internet-ресурсам. При использовании Internet - ресурсов в процессе подготовки не нужно их автоматически «скачивать», они должны быть проанализированы. Не нужно «скачивать» готовые рефераты, так как их однообразие преподаватель сразу выявляет, кроме того, они могут быть сомнительного качества.
- В процессе изучения темы анализируйте несколько источников. Используйте периодическую печать - специальные журналы.
- Полезным будет работа с электронными учебниками и учебными пособиями в Internet-библиотеках. Зарегистрируйтесь в них: университетская библиотека Онлайн (http://www.biblioclub.ru/) и электронно-библиотечная система «Лань» (http://e.lanbook.com/).
- В процессе подготовки и построения ответов при выступлении не просто пересказывайте текст учебника, но и выражайте свою личностно-профессиональную оценку прочитанного.
- Если к семинарским занятиям предлагаются задания практического характера, продумайте план их выполнения или решения при подготовке к семинару.
- При возникновении трудностей в процессе подготовки взаимодействуйте с преподавателем, консультируйтесь по самостоятельному изучению темы.
4. Самостоятельная работа.
- При изучении дисциплины не все вопросы рассматриваются на лекциях и семинарских занятиях, часть вопросов рекомендуется преподавателем для самостоятельного изучения.
- Поиск ответов на вопросы и выполнение заданий для самостоятельной работы позволит вам расширить и углубить свои знания по курсу, применить теоретические знания в решении задач практического содержания, закрепить изученное ранее.
- Эти задания следует выполнять не «наскоком», а постепенно, планомерно, следуя порядку изучения тем курса.
- При возникновении вопросов обратитесь к преподавателю в день консультаций на кафедру.
- Выполнив их, проанализируйте качество их выполнения. Это поможет вам развивать умения самоконтроля и оценочные компетенции.
5. Итоговый контроль.
- Для подготовки к экзамену возьмите перечень примерных вопросов у преподавателя.
- В списке вопросов выделите те, которые были рассмотрены на лекции, семинарских занятиях. Обратитесь к своим записям, выделите существенное. Для более детального изучения изучите рекомендуемую литературу.
- Если в списке вопросов есть те, которые не рассматривались на лекции, семинарском занятии, изучите их самостоятельно. Если есть сомнения, задайте вопросы на консультации перед экзаменом.
- Продумайте свой ответ на экзамене, его логику. Помните, что ваш ответ украсит ссылка на источник литературы, иллюстрация практики применения теоретического знания, а также уверенность и наличие авторской аргументированной позиции как будущего субъекта профессиональной деятельности.