МИНОБРНАУКИ РОССИИ
федеральное государственное бюджетное образовательное учреждение высшего образования
«Алтайский государственный университет»

Математика (геометрия)
рабочая программа дисциплины

Закреплена за кафедройКафедра алгебры и математической логики
Направление подготовки35.03.10. Ландшафтная архитектура
ПрофильЛандшафтное проектирование и дизайн окружающей среды
Форма обученияОчная
Общая трудоемкость5 ЗЕТ
Учебный план35_03_10_ЛА-2-2020
Часов по учебному плану 180
в том числе:
аудиторные занятия 108
самостоятельная работа 45
контроль 27
Виды контроля по семестрам
экзамены: 2
зачеты: 1

Распределение часов по семестрам

Курс (семестр) 1 (1) 1 (2) Итого
Недель 15,5 16
Вид занятий УПРПДУПРПДУПРПД
Лекции 22 22 22 22 44 44
Практические 32 32 32 32 64 64
Сам. работа 18 18 27 54 45 72
Часы на контроль 0 0 27 27 27 27
Итого 72 72 108 135 180 207

Программу составил(и):
к.ф.м.н., ст.преподаватель, Фёдорова А.Н.

Рецензент(ы):
к.ф.м.н., доцент, Вараксин С.В.

Рабочая программа дисциплины
Математика (геометрия)

разработана в соответствии с ФГОС:
Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 35.03.10 Ландшафтная архитектура (уровень бакалавриата) (приказ Минобрнауки России от 01.08.2017 г. № 736)

составлена на основании учебного плана:
35.03.10 Ландшафтная архитектура
утвержденного учёным советом вуза от 30.06.2020 протокол № 6.

Рабочая программа одобрена на заседании кафедры
Кафедра алгебры и математической логики

Протокол от 30.08.2019 г. № 15
Срок действия программы: 2019-2020 уч. г.

Заведующий кафедрой
А.И. Будкин, д.ф.м.н., профессор

Визирование РПД для исполнения в очередном учебном году

Рабочая программа пересмотрена, обсуждена и одобрена для
исполнения в 2020-2021 учебном году на заседании кафедры

Кафедра алгебры и математической логики

Протокол от 30.08.2019 г. № 15
Заведующий кафедрой А.И. Будкин, д.ф.м.н., профессор

1. Цели освоения дисциплины

1.1.Цели:
познакомить студентов с основными идеями и понятиями высшей математики, научить студентов языку математики,
подготовить к изучению и применению математических методов в биологии, к самостоятельному изучению тех разделов математики, которые могут потребоваться дополнительно в практической и исследовательской работе;Развить способность к самоорганизации и самообразованию и способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности.
Задачи:
изучение дисциплины направлено на развитие у обучающихся навыков по работе с математическим аппаратом, на подготовку их к системному восприятию дальнейших дисциплин из учебного плана, использующих математические методы; на получение представлений об основных идеях и методах математического анализа и линейной алгебры и развитие способностей сознательно использовать материал курса, умение разбираться в существующих математических методах и моделях и условиях их применения; на демонстрацию обучающимся примеров применения методов математического анализа и линейной алгебры в географии

2. Место дисциплины в структуре ООП

Цикл (раздел) ООП: Б1.О.04

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
ОПК-1: Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий;
В результате освоения дисциплины обучающийся должен
3.1.Знать:
3.1.1.Знает: основные приемы самостоятельного изучения учебной литературы по математике;
Знает: основные приемы самостоятельного изучения учебной литературы по математике;

3.2.Уметь:
3.2.1.Умеет: самостоятельно находить решения типовых задач по математике;
Умеет: самостоятельно находить решения типовых задач по математике;

3.3.Иметь навыки и (или) опыт деятельности (владеть):
3.3.1.Владеет: терминологией основных разделов математики, предусмотренных программой.
Владеет: терминологией основных разделов математики, предусмотренных программой

4. Структура и содержание дисциплины

Код занятия Наименование разделов и тем Вид занятия Семестр Часов Компетенции Литература
Раздел 1. Элементы линейной алгебры и аналитической геометрии
1.1. Координаты в плоскости и пространстве. Расстояние между двумя точками, площадь треугольника, деление отрезка в данном отношении. Уравнение прямой линии. Эллипс, гипербола, парабола. Полярная система координат. Лекции 1 4 ОПК-1 Л2.1, Л1.1, Л1.2
1.2. Координаты в плоскости и пространстве. Уравнения прямой линии, эллипса, гиперболы, параболы. Практические 1 5 ОПК-1 Л2.1, Л1.1, Л1.2
1.3. Координаты в плоскости и пространстве. Расстояние между двумя точками, площадь треугольника, деление отрезка в данном отношении. Уравнение прямой линии. Эллипс, гипербола, парабола. Полярная система координат. Сам. работа 1 3 ОПК-1 Л2.1, Л1.1, Л1.2
1.4. Понятие вектора. Координаты вектора. Операции над векторами. Скалярное, векторное, смешанное произведения. Разложение вектора по базису. Понятие n-мерного векторного пространства. Лекции 1 5 ОПК-1 Л2.1, Л1.1, Л1.2
1.5. Векторы. Практические 1 5 ОПК-1 Л2.1, Л1.1, Л1.2
1.6. Понятие вектора. Координаты вектора. Операции над векторами. Скалярное, векторное, смешанное произведения. Разложение вектора по базису. Понятие n-мерного векторного пространства. Сам. работа 1 3 ОПК-1 Л2.1, Л1.1, Л1.2
1.7. Матрицы. Прямоугольные и квадратные матрицы. Сумма и произведение матриц. Матрицы в биологических исследованиях: популяционные матрицы, матрицы рационов. Лекции 1 4 ОПК-1 Л2.1, Л1.1, Л1.2
1.8. Матрицы. Практические 1 5 ОПК-1 Л2.1, Л1.1, Л1.2
1.9. Матрицы. Прямоугольные и квадратные матрицы. Сумма и произведение матриц. Сам. работа 1 3 ОПК-1 Л2.1, Л1.1, Л1.2
1.10. Определители. Вычисление определителей 2 и 3 порядков. Определители n-го порядка. Их свойства. Решение систем линейных уравнений. Алгебраическое интерполирование. Лекции 1 4 ОПК-1 Л2.1, Л1.1, Л1.2
1.11. Определители. Системы линейных уравнений. Практические 1 5 ОПК-1 Л2.1, Л1.1, Л1.2
1.12. Определители. Вычисление определителей 2 и 3 порядков. Определители n-го порядка. Их свойства. Решение систем линейных уравнений. Алгебраическое интерполирование. Сам. работа 1 3 ОПК-1 Л2.1, Л1.1, Л1.2
Раздел 2. Элементы математического анализа
2.1. Множества и функции. Операции над множествами. Понятие функции. Ограниченная, монотонная функции. Последовательность. Элементарные функции. Способы задания функций. Сам. работа 1 3 ОПК-1 Л2.1, Л1.1, Л1.2
2.2. Предел функции, непрерывность. Понятие предела функции в точке. Предел последовательности. Свойства пределов. Замечательные пределы. Непрерывность функции в точке и на отрезке, свойства непрерывных функций. Лекции 1 5 ОПК-1 Л2.1, Л1.1, Л1.2
2.3. Предел функции, непрерывность Практические 1 12 ОПК-1 Л2.1, Л1.1, Л1.2
2.4. Предел функции, непрерывность. Понятие предела функции в точке. Предел последовательности. Свойства пределов. Замечательные пределы. Непрерывность функции в точке и на отрезке, свойства непрерывных функций. Сам. работа 1 3 ОПК-1 Л2.1, Л1.1, Л1.2
2.5. Промежуточная аттестация Зачет 1 ОПК-1 Л2.1, Л1.1, Л1.2
2.6. Производная и дифференциал. Определение производной функции в точке, ее геометрический и физический смысл. Производные элементарных функций. Дифференциал. Лекции 2 5 ОПК-1 Л2.1, Л1.1, Л1.2
2.7. Производная и дифференциал. Практические 2 8 ОПК-1 Л2.1, Л1.1, Л1.2
2.8. Производная и дифференциал. Определение производной функции в точке, ее геометрический и физический смысл. Производные элементарных функций. Дифференциал. Сам. работа 2 6 ОПК-1 Л2.1, Л1.1, Л1.2
2.9. Приложение производной. Правило Лопиталя раскрытия неопределенностей. Формула Тейлора. Исследование функций с помощью производных. Необходимые и достаточные условия экстремума функции. Асимптоты. Точка перегиба. Лекции 2 7 ОПК-1 Л2.1, Л1.1, Л1.2
2.10. Приложение производной. Практические 2 8 ОПК-1 Л2.1, Л1.1, Л1.2
2.11. Приложение производной. Правило Лопиталя раскрытия неопределенностей. Формула Тейлора. Исследование функций с помощью производных. Необходимые и достаточные условия экстремума функции. Асимптоты. Точка перегиба. Сам. работа 2 7 ОПК-1 Л2.1, Л1.1, Л1.2
2.12. Интеграл. Понятие первообразной функции. Неопределенный интеграл, его основные свойства. Таблица неопределенных интегралов. Замена переменных. Интегрирование по частям. Определенный интеграл, его свойства. Формула Ньютона-Лейбница. Лекции 2 6 ОПК-1 Л2.1, Л1.1, Л1.2
2.13. Интеграл. Практические 2 8 ОПК-1 Л2.1, Л1.1, Л1.2
2.14. Интеграл. Понятие первообразной функции. Неопределенный интеграл, его основные свойства. Таблица неопределенных интегралов. Замена переменных. Интегрирование по частям. Определенный интеграл, его свойства. Формула Ньютона-Лейбница. Сам. работа 2 7 ОПК-1 Л2.1, Л1.1, Л1.2
2.15. Приложения определенного интеграла. Площадь криволинейной трапеции. Объем тела. Длина дуги кривой. Лекции 2 4 ОПК-1 Л2.1, Л1.1, Л1.2
2.16. Приложения определенного интеграла. Практические 2 8 ОПК-1 Л2.1, Л1.1, Л1.2
2.17. Приложения определенного интеграла. Площадь криволинейной трапеции. Объем тела. Длина дуги кривой. Сам. работа 2 7 ОПК-1 Л2.1, Л1.1, Л1.2
Раздел 3. Экзамен
3.1. Повторение пройденного материала. Подготовка к экзамену, сдача экзамена Сам. работа 2 27 ОПК-1 Л2.1, Л1.1, Л1.2
3.2. промежуточная аттестация Экзамен 2 27 ОПК-1 Л2.1, Л1.1, Л1.2

5. Фонд оценочных средств

5.1. Контрольные вопросы и задания
Приложение
5.2. Темы письменных работ (эссе, рефераты, курсовые работы и др.)
Приложение
5.3. Фонд оценочных средств
Приложение
Приложения

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Рекомендуемая литература
6.1.1. Основная литература
Авторы Заглавие Издательство, год Эл. адрес
Л1.1 В.П. Кузовлев Курс геометрии: элементы топологии, дифференциальная геометрия, основания геометрии : Учебное пособие Физматлит, 2012 http://biblioclub.ru/index.php?page=book&id=275554
Л1.2 В.А. Ильин, Э.Г. Позняк Аналитическая геометрия: Учебное пособие ФИЗМАЛИТ, 2009 http://biblioclub.ru/index.php?page=book&id=82797
6.1.2. Дополнительная литература
Авторы Заглавие Издательство, год Эл. адрес
Л2.1 И. И. Привалов Аналитическая геометрия: учебник СПб.: Лань, 2010 https://e.lanbook.com/reader/book/321/#1
6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"
Название Эл. адрес
Э1 Электронная библиотека: www.lib.asu.ru
Э2 Образовательный математический сайт http://www.exponenta.ru
Э3 Образовательный математический сайт http://www.exponenta.ru
6.3. Перечень программного обеспечения
Microsoft Windows 7;
Microsoft Office 2010
7-Zip
AcrobatReader
6.4. Перечень информационных справочных систем
1. http://www.lib.asu.ru - Научная библиотека Алтайского государственного университета;
2. http://www.biblioclub.ru - электронно-библиотечная система издательства «Лань»;
3. http://exponenta.ru - Образовательный математический сайт
4. http://www.biblioclub.ru - электронно-библиотечная система "Университетская библиотека online";
5. База данных литературы информационно-методического кабинета факультета социологии АлтГУ "ФОЛИАНТ"

7. Материально-техническое обеспечение дисциплины

Аудитория Назначение Оборудование
Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа (лабораторных и(или) практических), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, курсового проектирования (выполнения курсовых работ), проведения практик Стандартное оборудование (учебная мебель для обучающихся, рабочее место преподавателя, доска)
Помещение для самостоятельной работы помещение для самостоятельной работы обучающихся Компьютеры, ноутбуки с подключением к информационно-телекоммуникационной сети «Интернет», доступом в электронную информационно-образовательную среду АлтГУ

8. Методические указания для обучающихся по освоению дисциплины

1. Для успешного освоения содержания дисциплины необходимо посещать лекции, принимать активное участие в работе на семинаре, практическом занятии, а также выполнять задания, предлагаемые преподавателем для самостоятельного изучения.
2. Лекция.
-На лекцию приходите не опаздывая, так как это неэтично.
- На лекционных занятиях необходимо конспектировать изучаемый материал.
- Для систематизации лекционного материала, который будет полезен при подготовке к итоговому контролю знаний, записывайте на каждой лекции тему, вопросы для изучения, рекомендуемую литературу.
- В каждом вопросе выделяйте главное, обязательно запишите ключевые моменты (определение, факты, законы, правила и т.д.), подчеркните их.
- Если по содержанию материала возникают вопросы, не нужно выкрикивать, запишите их и задайте по окончании лекции или на семинарском занятии.
- Перед следующей лекцией обязательно прочитайте предыдущую, чтобы актуализировать знания и осознанно приступить к освоению нового содержания.
3.Семинарское (практическое) занятие – это форма работы, где студенты максимально активно участвуют в обсуждении темы.
- Для подготовки к семинару необходимо взять план семинарского занятия (у преподавателя).
- Самостоятельную подготовку к семинарскому занятию необходимо начинать с изучения понятийного аппарата темы. Рекомендуем использовать справочную литературу (словари, справочники, энциклопедии), целесообразно создать и вести свой словарь терминов.
- На семинар выносится обсуждение не одного вопроса, поэтому важно просматривать и изучать все вопросы семинара, но один из вопросов исследовать наиболее глубоко, с использованием дополнительных источников (в том числе тех, которые вы нашли самостоятельно). Не нужно пересказывать лекцию.
- Важно запомнить, что любой источник должен нести достоверную информацию, особенно это относится к Internet-ресурсам. При использовании Internet - ресурсов в процессе подготовки не нужно их автоматически «скачивать», они должны быть проанализированы. Не нужно «скачивать» готовые рефераты, так как их однообразие преподаватель сразу выявляет, кроме того, они могут быть сомнительного качества.
- В процессе изучения темы анализируйте несколько источников. Используйте периодическую печать - специальные журналы.
- Полезным будет работа с электронными учебниками и учебными пособиями в Internet-библиотеках. Зарегистрируйтесь в них: университетская библиотека Онлайн (http://www.biblioclub.ru/) и электронно-библиотечная система «Лань» (http://e.lanbook.com/).
- В процессе подготовки и построения ответов при выступлении не просто пересказывайте текст учебника, но и выражайте свою личностно-профессиональную оценку прочитанного.
- Если к семинарским занятиям предлагаются задания практического характера, продумайте план их выполнения или решения при подготовке к семинару.
- При возникновении трудностей в процессе подготовки взаимодействуйте с преподавателем, консультируйтесь по самостоятельному изучению темы.
4. Самостоятельная работа.
- При изучении дисциплины не все вопросы рассматриваются на лекциях и семинарских занятиях, часть вопросов рекомендуется преподавателем для самостоятельного изучения.
- Поиск ответов на вопросы и выполнение заданий для самостоятельной работы позволит вам расширить и углубить свои знания по курсу, применить теоретические знания в решении задач практического содержания, закрепить изученное ранее.
- Эти задания следует выполнять не «наскоком», а постепенно, планомерно, следуя порядку изучения тем курса.
- При возникновении вопросов обратитесь к преподавателю в день консультаций на кафедру.
- Выполнив их, проанализируйте качество их выполнения. Это поможет вам развивать умения самоконтроля и оценочные компетенции.
5. Итоговый контроль.
- Для подготовки к зачету/экзамену возьмите перечень примерных вопросов у преподавателя.
- В списке вопросов выделите те, которые были рассмотрены на лекции, семинарских занятиях. Обратитесь к своим записям, выделите существенное. Для более детального изучения изучите рекомендуемую литературу.
- Если в списке вопросов есть те, которые не рассматривались на лекции, семинарском занятии, изучите их самостоятельно. Если есть сомнения, задайте вопросы на консультации перед экзаменом.
- Продумайте свой ответ на экзамене, его логику. Помните, что ваш ответ украсит ссылка на источник литературы, иллюстрация практики применения теоретического знания, а также уверенность и наличие авторской аргументированной позиции как будущего субъекта профессиональной деятельности.